Superefficiency in nonparametric function estimation
نویسندگان
چکیده
منابع مشابه
On Information Pooling, Adaptability And Superefficiency in Nonparametric Function Estimation
The connections between information pooling and adaptability as well as superefficiency are considered. Separable rules, which figure prominently in wavelet and other orthogonal series methods, are shown to lack adaptability; they are necessarily not rate-adaptive. A sharp lower bound on the cost of adaptation for separable rules is obtained. We show that adaptability is achieved through inform...
متن کاملNonparametric Estimation Over Shrinking Neighborhoods: Superefficiency and Adaptation
A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on...
متن کاملNonparametric Estimation over Shrinking Neighborhoods: Superefficiency and Adaptation1 by T. Tony Cai
A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on...
متن کاملWavelets and Nonparametric Function Estimation
The problem of nonparametric function estimation has received a substantial amount of attention in the statistical literature over the last 15 years. To a very large extent, the literature has described kernel-based convolution smoothing solutions to the problems of probability density estimation and nonlinear regression. Among the subcultures within this literature has been a substantial effor...
متن کاملNonparametric Function Estimation Involving Errors-in-variables
We examine the effect of errors in covariates in rionparametric function estimation. These functions include densities, regressions and conditional quantiles. To estimate these functions, we use the idea of deconvoluting kernels in conjunction with the ordinary kernel methods. We also discuss a new class of function estimators based on local polynomials. oAbbreviated title. Error-in-variable re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1997
ISSN: 0090-5364
DOI: 10.1214/aos/1030741087